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Generalized hydrodynamics of binary liquids: Transverse collective modes
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The parameter-free generalized collective modes approach in eight-variable approximation is applied for
investigation of transverse dynamics of Lennard-Jones liquid Kr-Ar beyond the hydrodynamic region. We find
four branches of propagating eigenmodes in the spectrum of transverse collective excitations. Different basis
sets of dynamical variables are applied to estimate the origin of different branches in the spectrum. It is shown
that for large wave numbers the general feature of transverse collective excitations is their “partial” character,
while in hydrodynamic limit they are formed by collective behavior of liquid. A detailed analysis of the
separated contributions from different collective modes into time correlation functions and spectral functions is
performed. The condition of existence of high-frequency mass-concentration waves is derived. It is shown that
high-frequency collective excitations, caused by the mass-concentration fluctuations, reflect some properties of
optic phonon modes in solids.

PACS numbg(s): 61.20.Ja, 61.20.Lc, 05.20.Jj

[. INTRODUCTION from the theoretical point of view and cannot be considered
as a rigorous one. Hence, the first problem is to define col-
Over the last two decades the theory of dynamics in purdective modes in an appropriate way and to study their role in
liquids has advanced at a rapid pace. With the active use afynamics of fluids.
computer simulations and memory function theory the study Within the generalized collective mod&CM) approach,
of dynamics has progressed from a simple investigation oproposed originally in Refl7] and developed then in Ref.
diffusion and dynamical structure factors to a sophisticated8—10], the collective excitations in fluids are directly asso-
generalization of hydrodynamics, which takes into accountiated with eigenvalues of so-called generalized hydrody-
short-time kinetic processes. For the dynamics of binary lighamic matrix, which determines the time evolution of a sys-
uids the situation is quite different. Only the simplest dy-tem. Such a definition of collective modes is in agreement
namic properties such as self- diffusion and mutual diffusiorwith the generally accepted principle of statistical physics,
are understood pretty well, while the mechanism of formawhen collective modes are identified with the poles of cor-
tion of collective excitations and their contributions into total responding Green function or generalized susceptibility. The
spectral functions are not yet established. GCM approach was developed with the purpose of theoreti-
The transverse dynamics of binary liquids is much lessal analysis of TCFs obtained in molecular dynan{id).
investigated even than the longitudinal one. Since transverddD-derived functions contain in their shape the information
excitations are not visible in scattering experiments, onlyabout all possible long- and short-time processes in liquid
computer simulations can give some information about speddiffusivelike, propagating, and kinetic collective mogles
tra of transverse modes. However, this information can b@&nd mode-coupling effects. The analysis based on hydrody-
very valuable both for the interpretation of computer experi-namic set of equations fails to explain the shape of MD func-
ments and for understanding in more details the main speions, because such a method can only describe the most
cific features in the dynamics of a binary fluid, which appearlong-time processes in fluid. The GCM method, which is the
due to the coupling between partial currents. The longitudidmost consistent approach of generalization of hydrodynam-
nal dynamics is much more complicated because of addics, treats on the same footing the long- and short-time pro-
tional coupling between the density and energy fluctuationscesses: the generalized Langevin equation for time correla-
Nevertheless, one can expect that the results obtained for tii@n functions is solved in matrix form using the basis set of
transverse dynamics could also be useful for understandindynamical variables, which in addition to hydrodynamic
some features of the longitudinal case. variables contains their time derivatives. The time evolution
In the last few years there were just a few repdits4]  of these “extended” variables, which describe processes of
on transverse dynamics of binary liquid and amorphous sysshorter time scale than hydrodynamic one, is obtained in
tems, in which the problem of transverse excitations wasomputer experiments to evaluate relevant time correlation
considered. Typically, the spectra of transvefas well as  functions and static averages. In general, the basis S} of
longitudina) excitations are obtained from the analysis of dynamical variables generatesNy XN, secular equation
Fourier-spectra of “current-current” time correlation func- and results ilN, generalized collective modésigenvalues
tions (TCF9, so that the intuitive definition for collective AmongN, eigenvalues the lowest ones always correspond to
modes prevails. Within such a scheme the dispersion anthe hydrodynamic modes, which have the right asymptotics
damping coefficient of particular modes are directly relatedat k— 0 predicted by linear hydrodynamics. All other eigen-
to the position and width of corresponding maxima in partialvalues are callellineticmodes, which correspond to the pro-
or total “current-current” spectral functionésee also Ref. cesses of short-time scale and cannot be obtained within the
[5,6]). It is evident that such an approach is not satisfactorystandard hydrodynamic treatment.
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For transverse dynamics the GCM approach has been ap- [l. ANALYSIS OF TRANSVERSE DYNAMICS IN A
plied for the study of a simple Lennard-Jones liq{i8d11] BINARY LIQUID

and a quujd metallic (.35[12]’ wh_ere the collective mod_e We applied the parameter-free GCM approach to investi-
spectra, time correlation functions and the generalizeqiaiion of transverse time correlation functions and spectrum
(k,w)-dependentK andw being wave vector and frequency, of transverse collective excitations of a Lennard-Jones
respectively shear viscosities were calculated. The Obta'ne%quimolar Kr-Ar liquid at temperatur&= 116 K and density
results within the Markovian approximation were in good n—0 0182 A3 [13]. The standard molecular dynamics
agreement with molecular dynamics data over the wholgjmylations within microcanonical ensemble for the system
range of wave numbers and frequencies considered. One gf 864 particles were performed oveix3 0 time steps to
the main findings herein was the dispersion of the lowesbbtain the time evolution of basis dynamical variables, rel-
branch of propagating modes, which was able to explain alkvant static averages and time correlation functions. Four-
the peculiarities of crossover from viscous to elastic behavioteen k points were considered. The smallest wave number
in simple fluids. The main feature of this crossover is thereached in MD wa,;,=0.1735 A~1. For eachk point the
existence of propagating gap with the width depending orshape of MD-derived time correlation functions and the
temperature. In Ref[3] the temperature dependence of spectrum of eigenvalues were analyzed within the high-
propagating gap was studied for a metallic binary glassvariable approachl0] of the GCM method. Although the
forming system MgyZnso. main features of the spectrum of collective excitations can be
Comparing the transverse dynamics of binary fluids withreproduced within two-variable approximation, the high-
the case of a simple liquid one can expect some specifi¥ariable basis set allows to obtain branches of high-
features due to the coupling of different components. In thdrégquency kinetic modes, which due to mode-coupling ef-
hydrodynamic limit there is no qualitative difference in the fECtS correct locations of low-frequency branches. It was
time behavior of hydrodynamic “current-current” TCFs in shown in Ref[10], that the nine-variable approximation for

the both cases. This is because the only conserved quantityI gltutwnal c:ykr:admlczjs of a S|mpleblllqumjf|rst tthlzee .t'Te
the density of total transverse current, so that the correspon crivatives ot ydrodynamic variables were taken into ac-
.couny allowed to obtain relatively good converged low-

ing hyd“’dy'f‘a”.“c. equgnon _ha; the same form. Hence_, II?requency branches in spectrum of collective excitations.
hydrodynamic limit a binary liquid is treated as an effectlve.l.he situation with dynamical eigenvalues in the GCM

averaged Or?e'compOT‘e”t ﬂu.'d and all the specific fea'method is quite similar with the standard electronic structure
tures due to difference in species are then neglected. HOWgeihods, when the more orthogonal basis functions are taken
ever, beyond the hydrodynamic region, for finite valuek of i, exnansion of wave functions, the better converged are the
and w the transverse dynamics of a binary mixture can haV%nergies of lower bands. The following energy, mass, spatial

its own specific properties, which are not observed in simpleynd time scales were used to reduce the dimension of rel-
flu!ds.. As an example we may refer to Brpwnlan_partlcl_es Nevant quantities:s=kgT, w=m, o=k1 r=o(ule)?
a liquid, which can be considered as a binary mixture in the_ 4 ggg ps.
limit of very large mass ratio of heavy and light particles.

Another specific feature in dynamics of a binary system has

been observed in ionic fluids. In particular, in the dynamic
“charge-charge” structure factor of liquid Lifjust above The standard hydrodynamic treatment of transverse dy-
the melting pointit was found(besides the central peak, due namics[14] of binary liquids is based on the only dynamical
to dissipative processesvo side peaks due to propagating variableJ,(k)

charge waves, which were, in fact, opticlike high-frequency

excitations. Moreover, it was found that the spectrum of pho- 1 2 N ¢ _

non excitations for crystalline LiF at high temperatures cor- Jt(k)=J1(k)+J2(k)=\/—N 21 21 MU o EXPLIK T4,
relates well with the data for liquid state, and the effect of R &
melting is a comparatively minor one. However, in neutral

binary liquids there was neither experimental nor theoretic%hereJt(k) is the total transverse current operate= N,
information about the existence of opticlike eXC|tat|ons.+N2 is the total number of particles and , o' denote a

Hence, we aimed in this paper to show how to take into__ 2. . .
. . . ; osition and a transverse component of velocity of itthe
account in a consistent way two kind of processes in thé

o . rﬁarticle in the ath species. In that approach the single-

transverse dynamics: fluctuations of total transverse curre . A . .
) . L ) exponential expression is obtained for transverse “current-
and mass-concentration fluctuations. This will result in ap- rrent” time correlation functior{)(k.t) [15,14
pearence of several branches in the spectrum of collectivé! : ion functior);(k,t) ’
modes. Hence, another goal of this study is to investigate the M
origin of each branch of transverse collective excitations of E®) k 1)~ — k.T extf — 7k2t/ o} = mkaT exp| —t/ 7
binary liquids. 3k t) N B p{ — nk“t/p} B e Jab
The paper is organized as follows. In Sec. Il an applica- (2

tion of the method of generalized collective modes to a _ ) _
Lennard-Jones liquid Kr-Ar is reported. We give the simplestWherep=M/V and 7 are a mass density and shear viscosity,
analytical treatment of transverse mass-concentration flucespectively. Note that! = mN=m;N;+m,N,. This result
tuations in Sec. Il and Sec. IV contains conclusions of thisis valid within the precision of zeroth frequency moment and

study. can be applied in long length limit for simple fluids as well

A. Time correlation functions
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as their mixtures. Hence, in this limit a binary liquid is !
treated as an effective “averaged” one-component fluid and

all the specific features due to difference in species are thel s
neglected.

We start from the definition of a dynamical variable,
which is the complementary one to the total current operator
(1). Such a variable is the transverse mutual mass-z
concentration current,(k), which is also the linear combi- < ¢
nation of partial currentd,(k) andJ,(k):

0.2

Ju(K) =x%3J1(K) —X1J5(k), ©) .!"'\, ‘E

where x,=m,N,/Nm=m_,c,/m are the mass concentra-
tions x;+X,=1. Note that the dynamic variablg (k) is
orthogonal to the transverse total currdgk) in the sense 02 ) ” v = .
of thermodynamic theory of fluctuations. This means that !

Fxi(k)=F(k)=0. It should be mentioned also that lat FIG. 1. Transverse total current autocorrelation functions
=0 the variablel, (k) describes, in fact, the opposite motion Ftt(kt) for five k values for an equimolar liquid Kr-Ar.

of particles of different species. Another important point is,

that the mutual diffusion coefficiem, (see, e.g., Ref16])

is directly related to the functiof (k.t) atk=0 the system. The position qf minimum i (k,t) is ch.ang.ing
towards smaller times by increasikgOne can see in Fig 1,
1 w that at the smallest value reached in our computer experi-
D12=_—f F,.(0t) dt, (4) ment, the short-time behavior of MD-derived functions
mS,«(0) Jo

Fi(k,t) is in agreement with general properties of time cor-
relation functions(odd frequency moments are equal to

whereS,,(0) is the value of the “mass concentration-mass : ) ) ;
concentr);ition” static structure fact&,(k) [17] atk=0. zero, Wh'_le the tail of Fy(k,t) can be fitted to the smglet
Thus, we are interested in three transverse time correld€€XPonential form(2). Here we note, that the hydrodynamic
tion functions.(i) Total current autocorrelation function: expression(2) is obtained in the limitk—0 and does not
reflect the right short-time behavidfor example, the first
Fu(k,t)=(J1(k,t)J1(k,0)) +2(J1(k,t)Io(k,0)) time derivative at=0 has nonzero valje
It is seen in Fig. 2, that the functiors,,(k,t) exhibit
+(Ja(k,1)J(k,0)). )

completely different behavior than total current autocorrela-
tion functionsF(k,t). For the smallesk value the function
Fyx(k,t) already has a minimum at0.11r, which remains
Fuc(k 1) =X2(31(k,1)J1(K,0)) + (xa—x1)(J1(k,1)J(K,0)) nearly in the same region for &llvalues shown. In contrast
to Fy(k,t) these functions at very smadlare rapidly decay-
—X1(J2(K,1)J5(k,0)). (6) ing and do not have long tails. This means, that mass-
concentration fluctuations, which are not taken into accout
within the standard hydrodynamic treatment and which de-
scribe the processes of shorter time scale than the hydrody-
Fuodk,1) = X331k, 1) 33(k,0)) = 2x1x2( 31k, 1) 32(K,0)) namic one,pcan cause propagating modes. YR

(i) Total current—mass-concentration current function:

(iiil) Mass-concentration current autocorrelation function:

+X3(J2(K,1)35(K,0)). (7)
0.25 T T T T T
Corresponding zeroth frequency moments are 2V

0.2 |

Fu(k,t=0)=mkgT,

Fu(k,t=0)=0, (8) o1

Fodk)

Fxx(k,t=0)=X1X2kaT. orr
Normalized time correlation functiong(k,t) (5) and 005 1
Fu(k,t) (7) for five k values in the range 0.1735
—1.2023 A1 are shown in Figs. 1 and 2, respectively.
FunctionsF(k,t) display in general the same behavior as
transverse current autocorrelation functions in the case o
simple liquids[11,12: at smallk valuesF(k,t) behave in 005 g 005 o 015 o2 0z 03
agreement with{2) having long-range exponential tail, while '
by increasind the negative minimum appears at short times, FIG. 2. Transverse mass-concentration current autocorrelation
that is the consequence of existence of propagating modes fanctionsFxx(k,t) for five k values for an equimolar liquid Kr-Ar.
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transverse dynamics consists of these two variables and their
first s time derivatives. One obtains the better agreement be-
tween MD-derived time correlation functions and their GCM
functions(9), when the higher number of time derivatives of
dynamical variables are included into the basis @&his
means that 8+ 1 frequency moments are identical for MD-
derived TCFs and GMC functiopdn this study we used the
basis set of eight operators, which includk¢k), J,(k) and

their first time derivatives up to the third order including

ABK) ={Ag,iLnAg, (ILN)2Ag, (ILy)3A}, (10

where iI:,\l is the Liouville operator, andAgy=Ag(k)

={3,(k),J(K)}. This basis set will provide for the GMC
' functions F{7(k,t) with i,j=t,x the precision within the
FIG. 3. Partial transverse current time correlation functionsSIXth fr”equency moments. Fo_r comparison, the ”‘?“”e.”t'
Fi(kt)(i,j=Kr,A) for k=0.1735 Al The cross-correlation current” TCFs are usually studied within the approximation
function Fy(k,t) (total current-mass-concentration curjes ~ Of the second frequency moments in memory function ap-
shown for comparison by dotted line. proach. It was shown in Ref8], that the high-variable ap-
proximation with first three time derivatives of hydrody-

One can compare the behavior of partial transverse cuf?@mic variables produced GCM functions in  perfect

rent time correlation function&;(k,t), i,j=Kr,Ar, shown agreement with MD data. _
for k=0.1735 A% in Fig. 3, with functionsF(k,t) and To calculate the generalized collective mode spectrum

F.x(k,t). All three partial time correlation functions have a within the method of GCM we generate the eigenvall_Je prob-
long-time tail and nonmonotonic behaviortat0.1r. Com- €M (see Ref[9,18)) for the generalized hydrodynamic ma-

paring cross-correlation functiof&ea,(k,t) andF,(k,t) in trix
Fig. 3 one can estimate, that partial dynamic cross correla-
tions for smallk-values are nearly one order of magnitude
stronger than thé-x ones. Thus, we can conclude, that the . . . . .
representation of transverse time correlation functions on theSN9 the bas.|s SQQ‘O)' For this basis sgt one'obtalns<'8
basis of total currentl) and mass-concentration curre Secular equation with the real symmetric matrix of static cor-
operators is more appropriate for small wave numbers than %?Iatlon functionsF(k) = F(k,t=0)

treatment within the basis set of partial operators.

T(k)=F(k,t=0)[F(k,z=0)]"*

Foo(k) 0 —F11(k) 0
B. Models of transverse dynamics F(k)= 0 F11(k) 0 —F (k)
—F1a(k) 0 Faa(k) 0 '

Basis set of operators in the method of GCM defines dy-
namical variables, which are used to generate an eigenvalue 0 —Faa(k) 0 Fas(k)
problem from the generalized Langevin equafiérig]. The
number of dynamical variableN, determines the order of - _
the eigenvalue problem and the number of single-exponenti@nd antisymmetric matrif(k) =F(k,z=0),
mode contributions into any GCM time correlation functions

| (k) Foo(k) 0 —F1a(k)
Fi(jm)(k't): E GL{(k)e‘Za(k)‘, (9) T__-(k): _FOO(k) 0 Fll(k) 0
a=1 0 —F1a(k) 0 Fao(k)
. PR o F11(k) 0 —Faa(k) 0
where the weight coefficiens!! (k) are expressed via eigen- (12)

vectors associated with a dynamical eigenvatyék) [9].
The time evolution of dynamical variables of the basis setEach matrix element ifl1) and(12) is a 2X 2 matrix evalu-
can be obtained in molecular dynamics. One has to notated on relevant-x operators. The subindex denotes the or-
here, that within the Newton dynamics any operator of theder of time derivatives of current operators, for example,
basis set is expessed in an analytical form via positions of
particles, their velocities, and spatial derivatives of inter- ((jtjt> <jtjx>)
atomic potentiasee Ref[9]). Hence, one can evaluate di- Fuk={ .. o .
rectly in MD any static average between basis variables (Ixdy) (Ixdw)
within the same precision. o ) o

Since the dynamical variables of transverse total currenpimilarly, 1(k) is the 2<2 matrix with elements
(1) and mass-concentration curréBj define completely the B
transverse dynamics of binary liquids, the ba;is set of opera- | (k)= j Fapktdt, a,f=3,,J,. (14)
tors within the method of GCM for the theoretical analysis of 0

13



2192 TARAS BRYK AND IHOR MRYGLOD PRE 62

Sl ' - - - tions for smallk values are much smaller, than the partial
bxox ones. In this case, one can expect that the solutions of two

oer ¢ 4x 4 secular equations generated for basis €ds will be

very close to the eigenvalues obtained for the “coupled”
o 1 eight-variable basis séfl0). This would permit to identify
the origin of different branches in the spectrum of transverse
collective excitations and to estimate the mode-coupling ef-
R fects between them. Similarly, an analysis of spectra can be
1 performed using another kind of separated partial subsets:

05

04t °

Lip(kIk2
o

03 [

02

¢ | A(4J):{jj,||:Nj],(||:N)sz,(ll:N)Sj]}, j:Kr,Ar.

01 | ° u g (17)
NSO T In this case each subset would allow to analyze separately
0 05 ! k‘(-;) 2 25 3 partial dynamics of components when cross correlation of

different species is neglected.

FIG. 4. Functions f,g(k)=k3l,5, @ B=J.Jy, calculated Similar analysis of the spectrum using separated subsets

from Eqg. (14) on the basis of MD-derived time correlation func- of dynamical variables was used in Rgf9] for investiga-

tions. tion of longitudinal collective modes in liquid bismuth. This

allowed to find a branch of heat waves in the spectrum of
It is worth mentioning that almost all matrix elements of collective excitations of a liquid semimetal.
F(k) andF(k) are static correlation functions, which can be
directly evaluated in molecular dynamics. Only the quanti-
ties 1(k) (14) contain information about time-dependent o o
properties of the system but they can be also estimated from One of the predictions of hydrodynamics is the absence of
computer experiments. Usirig4(k) one can obtain expres- fransverse sound waves in the lirkit=0, what means that

sions for correlation times relevant for transverse dynamicé€ liquid does not support long-wave transverse sound ex-
of a binary liquid citations. A width of hydrodynamic region, where the acous-

tic transverse excitations cannot propagate depends on the

133 thermodynamic point considered. It is interesting that this
+. (150  width decreases by cooling and vanishes in amorphous sys-
Fulki1=0) tems, where transverse sound waves are well defined even at
k—0. In Ref.[3] the temperature dependence of propagation
gap for transverse sound was investigated for liquid and un-
dercooled metallic alloy MgZns, within the method of
GCM. In the case of the liquid mixture Kr-Ar at 116 K we

the basis setl0) with the purpose to take into account mass-f'r.]d n contyast t'o MgyZng, a very wide pro pagation gap. I.n
Fig. 5 the imaginary and real parts of eigenvalues obtained

concentration fluctuations in transverse dynamics of a bina%ithin the four-variable basia ) are shown. One can see in

liquid, one can expect different behavior of correlation times_. hat th . 4l reqi h he |

(15 at smallk values. One can see from the Fig. 4 that theF'g' 5.t att ere.eX|sts a smairegion where t. e owest

correlation timer,(k) behaves in complete agreement with collective mode is purely diffusive and acoust'lcllke trans-
verse modes cannot propagate. This propagation gap deter-

. . . -2
hydrodynamics having asymptotiesc * for smallk values. mines, in fact, the range of hydrodynamic viscous behavior

For largek values the functiok?®r(k) behaves<k, that is in a fluid [20]. Beyond the propagation gap, two pairs of
consistent with the behavior of generalized static shear vis- . ' yi propag gap, pa
ting modes; (k) are obtained for the four-variable

cosity as the function ok~ * in Gaussian limit. For smak prop%gtj)a I
the functionsf,(k) and f,,(k) are weakly dependent dn setA™ (shown by symbols in Fig.)5

and tend to zero in the limk— 0. This means, that contrary z5(K)=*iw (k) +0o(k), o=Rez"(k)>0, j=1,2.
to 7(k) other correlation times do not have the hydrody- " ! e ) ’ &18)
namic asymptotics.

It is possible to consider separated subsets of dynamicglcije th ti the | t pair of fi
variables with the purpose to establish the origin of differentmzld:Sziikr)Jrovr\J;?cahI?Snv\?;r) d efien e%vvfisrk;o I‘?Hr ;)n dp;()sps%gci on
t,1 '

branches in the spectrum of eigenvalues. Let us constru%t[ed with shear(or transverse acousic-likavaves, disap-

two separated subsets pears and transforms into two relaxing modes with purely
real eigenvalueg.. r(k),

C. Spectra of transverse excitations

Ity

Tw(K)= —Ftt(k,t=0) )

Tux(K) =

From the expressio(2) one can evaluate the smallasymp-
totics for the correlation time, (k) <k~ 2. We show in Fig. 4
the behavior of functionsf,g(k)=k3l .z, @,B=J,Jx.
Since we included the nonhydrodynamic variabjék) into

AGD=13 LI, (1ILW)3,, (L%},  e=tx
(16 Imz'Rk)=0, j=1,2. (19

In this case two separated subsets form the “coupled” eight-

variable basis seA(®)(k) and it is obvious, that for separated For a binary Kr-Ar mixture we obtained a rather wide propa-

subsets the-x cross correlations are neglected. As it wasgating gap withk,;~0.35 A~1, When k is small, one of

shown in previous section, thex dynamic cross correla- these modestl*R(k) behaves as
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FIG. 5. Imaginary and real parts of eigenvalues obtained for the FIG. 6. Spectrum of collective excitations for a liquid KrAr,
four-variable setA® (16). Spline interpolation of eigenvalues is obtained for the “coupled” basis sét®)(k,t) (10) shown by sym-
shown by solid line. bols. The eigenvalues obtained on the separated basis sets are

shown by spline-interpolated lines: solid, dashed, dotted, and
Rez R(k)=Dk?2 20 dashed-dotted lines correspond to results on the four-variable sets
(k) 20 AU ABY S AGKD Sand AGAD - Q, denotes the position of main

with D being a kinematic viscosityD(= 7/p) known from peak for the “number-number” static structure fac®yy(k).

the standard hydrodynamic treatméit,14]. By analogy,
this mode can be called viscodiffusive one becdnss pro-

porerats e e sty ey e seons T g i e v b
9 t YAro= \vhich has very flat dispersiom,(k) and fork>0.8 A~ it

dynamic limit zf’R(k) it tends to the nonzero value, which . _ . : .
’ - . - . ' N ve th neraliz tic brangtik). W
gives a finite damping coefficient. This means, that the kI-S just above the generalized acoustic bramgik) €

) N ) o have to stress, that the basis §8) results in spectrum of
2R ’
netic modez; (k) is irrelevant in hydrodynamic limit. The collective excitations, where the mode coupling effects be-

same can be said about all kinetic modes, which have finitg, co, mass concentration and total current fluctuations are

damping coefficient in the limik—0. However, these ki- - +
. . S . i already taken into account. Therefore, the branchek
netic modes contribute significantly into dynamics beyond y I " )

the hydrodynamic region. The spectrum, obtained within th and z;(k)iget somi Sh'ft due to .“hybr|_d|zat|on‘:’ W't,r,]
basisA“ and shown in Fig. 5, has the same number o ranchesz, (k) andzg (k) in comparison with the “bare

modes and the same features as those obtained for simple PiRNches; (k) andz (k) (Fig. 5), obtained without taking
liquid [8,11] and metallic C412]. into account mass-concentration fluctuations.

The difference between spectra of transverse excitations 'h€ origin of branches is clearly understood, when we
in a binary system and simple liquid appears when we appl{PP!Y for analysis of “coupled” spectrum the separated sub-
the “coupled” basis setA® (10) for the solution of the sets(16) and(17). In Fig. 6 we show by different four lines
generalized Langevin equation. We obtained four pairs ofesults obtained for the separated basis sets. The interesting
propagating modes beyond the propagating gap Kor result for the eight-mode spectrum is the “partial” charac-

concentration fluctuations we obtained two additional
branches of propagating transverse excitatiapgk) and

>0.357 A1 (Fig. 6): hter of branches beyonQ,/2, whereQ, is the position of
main peak of the structure fact8&y(k). One can see from

Z-i(k)=+iwj(k)+0'j(k) oJ:Rez-i(k)>O j=1,2,3,4 the Fig. 6, that the branch, (k) at large values ok is

J - L J L L 7 1 "

(22) defined only by the light componefir) of the binary sys-
tem, while the lowest brancty (k) reflects the dynamics of
The same splitting of the lowest pair of propagating modedieavy componer(Kr). Interesting, that fok— c the ratio of
into relaxing ones inside the propagating gap was obtainedrequencies of branches (k) andz; (k) taken at the largest
Comparing Figs. 5 and 6 one can conclude, that the maik value considered in this study is1.482 that is close to
difference is the appearence of two additional branches ofmy,/m,,=1.448. This has some analogy with the crystal-
propagating excitations with intermediate frequencies beline state. In binary solids within the harmonic approxima-
tween propagating modes obtained on the basis set cotion it is known [21], that the frequencies of optithigh-
structed of total operators. Thus, taking into account massfrequency and acousti¢low-frequency phonon branches on
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the Brillouin zone boundary depend on the masses of par- 1.2 : : : :
ticles asC/ymjgy, and C/\Mpeayy, WhereC is some elastic 10 @ k=0.1735A1 G% .
constant, respectively. This analogy between dynamics of Zn
liquid and solid states becomes strightforward when we con- 0.8;
siderQ,/2 as the boundary of the first pseudo-Brillouin zone = 06l
in a binary liquid, becaus®,~2/(a), where(a) is the < o4

Lo N

average interparticle distance.
One can obtain within two-variable approximation in 02|
Gaussian limit

X0 ——
Zi(k) _ ”:]nheavy. (22) 0.2
z; (k) light 02
In high-variable approximations the deviation from the value
(22) is caused by coupling effects with higher branches. = 0.15¢
At k<Qu/2 one can see in Fig. 6, that the “partial” < 51l
charachter of the spectrum changes to “collective” one, Ta
which becomes dominant fdt—0. The branchz, (k) in 0.05}
that limit is completely defined by mass-concentration fluc-
tuations. For the liquid Kr-Ar the conditiof25) for exis- 0.0 e
tence of mass-concentration waves, derived in Sec. Il, is ful- 0.05 . . . .
filled in the wholek region investigated. Taking into account 0 0.2 0.4 0.6 0.8 1
the fact, that these fluctuations are caused by opposite mo- t
tion of particles in different species, we can conclude, that 1s. _
the propagating modes, (k) correspond to optic like trans- ‘ a GMC
verse excitations in the binary liquid. However, in contrast to 08} ) k=0.49084 "fiD 2
. . : ; S : A
crystalline state, in a binary fluid these optic like collective 2
excitations have finite time of lifer,(k) defined by their 061
damping coefficientdreal parts of eigenvalugsWe esti- g 04l
mated that the opticlike collective excitations in the Kr-Ar T

mixture are characterized by (k) ~0.2 ps(see Fig. . The 02|
branchesz; (k) and z, (k) correspond to excitations with

extremely small time of life, which are caused by mass con-
centration and total current fluctuations, respectively. Due to

*x
R PN s bk

mode coupling effects these extremely high-frequency 02
branches renormalize the position of “bare” acoustilike and 02h
opticlike modes, wich can be obtained within precision of \
the second frequency momeiitisvo-variable separated basis 0.15}
sets. )
In the case of Kr-Ar mixture the smallelsipoint, reached :Lg 0.1}
in MD experiment, was located, in fact, in the hydrodynamic 0.05
region Kmin<ky), so we could us€20) and estimated the '
value of the shear viscosity. In such a way it was found 0.0
that 7=2.517<10 % Pas. This correlates well with the o
value 2.36<10 * Pas obtained from the Green-Kubo for- -0.05 —_— e
mulas by integrating the relevant time correlation function. 0 01 02 03 04 05
Both our results are in good agreement with the experimental t
and MD data known previouslj13] for the Kr-Ar liquid at FIG. 7. The separated mode contributions iftg(k,t) and
116 K. F.«(k,t) time correlation functions for twd values. MD-derived
function and the result of GCM stud®) are shown by symbols and
D. Mode contibutions into time correlation functions solid lines, respectively. Mode contributions from kinetic optic-like

. waves, generalized shear excitations are given by dashed and
The method of GCM makes possible to represent an)éashed-gotted lines, respectively g y

time correlation function between basis dynamical variables
as the sum of mode contributiof@). Since in previous sec- correlation functions are shown. GCM functiof®, shown
tion we identified the branck, (k) as the opticlike modes, it by solid lines, are in good agreement with MD functions. In
is interesing to estimate how these excitations contribute intgeneral, for botlk values the behavior d¥,,(k,t) is defined
different time correlation functions. by the opticlike branctz, (k). Only short-time behavior has
In Figs. 1a), 7(b) one can see how the different branchessome mixing of other branches. The functiép(k,t) has for
contribute into time correlation function&(k,t) and  k=kp, two main contributions: long-time tail is determined
Fyx(k,t) for two k values. By asterisks the MD-derived time exclusively by the viscodiffusive modetl*R(k), while the
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FIG. 8. The separated mode contributions into paRjalk,t), (i,j =Kr,Ar) time correlation functions for fouk values. All settings are
as in previous figure.

short-time behavior has rather strong negative contributiofined by viscodiffusive mode! (k). The short-time part of
of the second relaxing kinetic modé (k). This contribu-  all three partial functions has rather big contributions of ki-
tion makes the deviation from the asymptotic hydrodynamimetic relaxing moda R(k) and opticlike modeg, (k). This
single- exponentlal f0fm defined by the contribution of vis-js rather surprising, that opticlike modes contribute so sig-
codiffusive modez;(k) even in hydrodynamic region. For nificantly into the short-time behavior of partial time corre-
higherk values ky <k<Q,/2 the functionF(k,t) is nearly  lation even in hydrodynamic region. Fdr=0.4908 A™*
almost due to contribution of the propagating brazg:l(lk) [Fig. 8b)] the situation with contributions is a little bit dif-
Very week contributions of higher brancheg (k) and  ferent. Only week tails of all three functions for 0.25r are
z, (k) correct slightly the short-time behavior of time corre- defined by the lowest branch of shear wavasoustic trans-
lation functions. verse excitations while for smaller times the contributions
According to our analysis of spectrum fioxx0.7 A~*the  from opticlike branch are comparable with those from the
transverse dynamics of binary liquid is described well ingeneralized acoustic branch. Even, there appears the ten-
terms of mass concentration and total-current fluctuationgdency for functiond=y«,(k,t) to be described for interme-
For k>Q_/2 the description is correct in terms of partial diate times mainly by contributions fromj (k) and the func-
current fluctuatlons We show in Figs(aB-8(d) contribu-  tions F s (k,t) by z, (k). This tendency becomes the rule
tions of different branches into partial time correlation func-for largek values: autocorrelation partial current functions of
tions for differentk values within the investigateki region.  light-heavy species in a mixture are determined almost com-
In agreement with the analysis of spectra the partial timeletely (except very short-time parby the modes of higher-
correlation functionsF g, (k,t) and Faa(k,t) are mainly  lower brancHsee Fig. &), 8(d)]. For allk values beyond the
described by contributions from the branchgs(k) and  propagation gap the contributions from acousticlike and op-
z, (k), respectively. For the smallektvalue [Fig. 8@] all ticlike branches; (k) andz, (k) into cross-correlation func-
three partial time correlation functionsF g, (K,t), tion Fy.a(K,t) are in opposite phases. For largeralues
Frar(K,t), andF s (k,t) have very long tail, which is de- cross-correlation partial functions become extremely small



2196 TARAS BRYK AND IHOR MRYGLOD PRE 62

0.7 . 0.7 —
GCM — \ GCM —
0.6 (© k=1.2023A" ﬁ ,,,,,,, . 0.6 (d) k=2.7766K" L -
b b 4-—
0.5 2 05} "\ 2
= 04 S 04)
£ x
£ 03 £ 03}
[N [
0.2 02l
0.1 0.1}
0 0
-0.1 } } | ! } } | | | -0.1
0.008 }
0.02}! i
- 0.004 |
< = ;
< ol . =
i £ 0
\ b4 /
w /
-0.004 |/
-0.02} ’
-0.008
0.3] ] 0.3}
= 02} = 02
< <
z I
s =
0.1} 0.1
(1] . 0
0 0.1 0.2 0.3 0.4 0.5 0 0.1 0.2 0.3 0.4 0.5
t t
FIG. 8 (Continued.
and irrelevant for consideration of collective effects. does not contain mass factors, which we used for definition

All this treatment of mode contributions into different of current operators. It follows, that the total spectral func-
time correlation functions is in agreement with our result fortion defined as the Fourier-transformrf(k,t) (5) has other
the spectrum of transverse collective excitations: at skall weights for partial contribution, than longitudinal one mea-
values all dynamical properties are described well in terms oured in scattering experiments. Therefore, to keep some
mass concentration and total current fluctuations, while foanalogy with longitudinal case we report here the parameter-
largek the “partial” picture in dynamics prevails. free analysis of mode contributions into the total transverse

spectral functiorC'(k, w),
E. Total spectral function

t —
We can define different spectral functions as the Fourier Cik,w)=Fyu(k o),

transform of time correlation functiong=(k,t) and

Fy(k,t). Using the expression where U(k,t)=J;(k,t)/m;+J,(k,t)/m, is defined in usual
N - way as the weighted sum of partial spectral functions. Note
v ! ~ S ~ ~ ~ ~ .
=y G, (k) . that J;=x,J;+J, andJ,=X,J;—Jy. In contrast to longitu-
i (Z)—Z o 5o, (23 .
a=1z+z,(k) dinal case the transverse spectral funct@(k,») has non-

zero value atw=0, which is connected with the value of
we are able to investigate mode contributions into any SPeqeneralized shear viscosityy(k), namely, C'(k,w=0)
tral function of interest. However, in scattering experiments—_ 7~ %(K). In Fig. 9 the functionC!(k,w) for a Kr-Ar mix-
one can explore only longitudinal processes in dynamics ofyre as well as the separated contributions from the low-
liquids. And the longitudinal total “current-current” spectral frequency collective modes, calculated for the “coupled” set
function, expressed via total dynamic structure factor of gyt dynamic variable&®, are displayed for several values of

binary liquid as k. It is seen that in complete agreement with the standard
) hydrodynamics for smalk (k=0.1735 A"! is within the
C'(k,w)= w—S(k,w), propagating gapthe total spectral function is nearly com-
k2 pletely defined by the viscodiffusive hydrodynamic mode
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FIG. 9. Separated contributions @ (k,w) from the opticlike
z, (k) (solid line with dot$ and acoustilike modeg; (k) (bold
dots for liquid Kr-Ar. The total spectral functio€'(k, ») is shown
by a solid line. Atk=0.1735 A"! the contributions from the vis-
codiffusive modezi®(k) and the relaxing kinetic modgf®(k) are
shown by bold dots and dots, respectively.

ztR(k). The total contributions from the other high-
frequency modes for the smalldstare practically equal to
zero (note that the second relaxing modgR(k) has very
small negative weight We emphasize that for intermediate
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contrast to the case of hydrodynamic modes remains a non-
zero one in the limik—0.

The simplest set of memory function equatidos mac-
roscopic equations of motion for a nonequilibrium averaged
dynamical variablg(J,(k))“] [22,23,2Q can be written in
the form

f(J4(K))*—(Ix(k))*=0,
§(3x(K)Y O+ (i w+ XK, 0= 0))(J,(k))*=0,

whereI'}(k) and¢}(k,w=0) are the second frequency mo-
ment and first order memory function in Markovian approxi-
mation, respectively,

_ (0 3(=k)) 1
<Jx(k)Jx(_k)> Ta(K)
Here 7,4(k) is a k-dependent Maxwell-like time of relax-

ation. Hence, the solutions of the system of two equations for
the collective modes are given by

of(k,0=0)=

S(k) = wyu(K),

112
. (29

1 —_—
[27a(K)]?

and, depending on the relation between the Maxwell-like re-
laxation timer,(k) and the second order frequency moment
wyx(K) of TCF thx(k,t), one has two different kinds of
collective modes(i) two purely relaxing modes for the case
when  w,,(K)[ 74 (kK)]?<0.25 and (i) two complex-
conjugated propagating modes fop,(K)[ 7,,(k)]?>0.25.

It is easily checked that in Gaussian approximation for the
TCF Fi(k,t) the condition(ii) is always valid. Using the
expression for the zeroth-order correlation timgy(k),
which is connected via Green-Kubo-like equation with time
correlation functiorF,,(k,t)

z; (k)= wox(K)

*
27y(K)

k)= L[ K =[w,(k k)1t
roK= &g | Ptk tdt=Tan0matio1

the condition of existence of propagating mass-concentration
waves (or opticlike collective modes z, = *iw,(k)

k-values the contribution from the opticlike collective modes + ox(k) can be obtained fron24) in the form

z, (k) increases and becomes even dominant for
>1 A~L. For all thek values considered beyond the propa-
gation gap we find that the functioB'(k,») displays a
maximum atw# 0. However, one may expect that in a bi-
nary system with a large difference in location of opticlike

and acousticlike excitations two maximum structure of the

total spectral function can also be observed.

IIl. CONDITION FOR EXISTENCE OF LONGWAVE
OPTICLIKE EXCITATIONS

The study of opticlike(mass-concentratignmodes and

o (K) 725(K)/4<1. (25
In the hydrodynamic limit we can rewrit@5) as
6= w,(0)D2ySH(0)/4(XXpksT)?<1.  (26)

It is seen, that there are several factors, which determine the
existence of opticlike excitations in the linkt—0, namely,

the mutual diffusionD,,, structure factoiS,,(k=0), tem-
perature T, and the second order frequency moment of
F.x(k,t). In particular, the high mutual diffusion and ten-

their role in transverse dynamics of binary liquids can bedency to demixing in the systefwhenS,,(0) is largd pre-
completed by a simple analytical treatment of massvent the emergence of opticlike transverse modes. When
concentration current fluctuations. The task is to take intccondition (26) is valid, the frequencyw,(0)=Im z; and

account the damping of kinetic opticlike modes, which in

dampingo,(0)=Rez, of opticlike modes ak=0 are
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0y (0)= /;2,x(0)(1— 5), o,(0)= /Ez,x(o) 5. (27) (iii) The high number of dynamical variables in basis set

used in numerical study enables to obtain transverse GCM

We see in(26) and (27) an interesting connection between functions within the precision of the sixth frequency mo-
the frequency and damping coefficient of opticlike transversénent. For comparison, the memory function approach for
excitations in longwave limit. In particular, for smafl an ~ transverse dynamics is usually applied within the precision
opticlike branch becomes very “soft” and can look even like Of the second frequency moment. Such a high-variable ap-
a pseudosound one. proach in the case of transverse dynamics allows to obtain up

It is seen from the results presented in this section that tht four branches of propagating excitations in the spectrum.
opticlike propagating excitations, which are caused by mu- (iv) The original analysis of spectra using separated sub-
tual mass-concentration fluctuations, can exist in a binarpets of dynamical variables makes it possible to conclude,
fluid. Such excitations were found previously for ionic lig- that the branch of propagating transverse modes with inter-
uids with charged particles in the speciese, e.g., Refs. mediate frequencies is caused mainly by mass-concentration
[24,25)). However, the general opinion was, that they are thecurrent fluctuations. This branch of transverse excitations is
specific feature of charged binary liquids only, and cannot bdust above the transverse “acoustic” branch and corresponds
observed in a mixture of neutral fluids. One can easily verify t0 opticlike modes in the binary liquid.

that the charge curredi(k), (v) The feature of branches of transverse collective exci-
tations is their “partial” character beyond the first pseudo-
- Q1. Q5. Brillouin zone, fork>Q/2. For smalk values the collective
Ja(k)= E‘]l(ka_sz(k)’ modes reflect collective properties of the system being de-

scribed correctly in terms of total- and mass-concentration
when an ionic liquid is totally neutral, is simply related to the current fluctuations.
mass-concentration curredig(k), namely, (vi) We found the propagation gap for transverse sound

for k<0.35 A1, In this region two relaxing modes appear

Q Q. instead of the lowest pair of transverse sound modes. One of
m; m, them is the viscodiffusive hydrodynamic mode with real ei-
genvalue~ k2. The value of shear viscosity, obtained from
Hence, the opticlike excitations, observed in an ionic liquid,ihis eigenvalue, is 2.52710°* Pas, that is in good agree-
are in fact the mutual mass-concentration waves discussed fient with experiments and computer simulation reus.
this paper. The main difference between the cases of ionic (vii) We were able within the GCM method to separate
and neutral liquids is the following: the oppositely chargedcontributions from different modes into time correlation
particles in different species create in their relative motion afynctions and their Fourier spectra. We found, that immedi-
eleCtriC f|e|d, Wh|Ch can be detected in OptiC experiments. Irhte|y beyond the propagation gap the Contribution of the op_
a neutral binary liquid the concentration fluctuations propericlike branch is comparable with the contribution of trans-
ties cannot be directly determined experimentally. Onlyyerse sound modes and is much bigger, than one from the
computer simulations and special analysis of mode contribugther kinetic modes. If the similar picture of mode contribu-
tions can shed light on the physics of high-frequency excitations exists in longitudinal case, there should exist binary
tions and their manifestation in experimental data. liquids for which the opticlike modes would be visible on

dynamical structure factors.

Jo(K).

JQ(k) = (

IV. CONCLUSIONS
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