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Generalized hydrodynamics of binary liquids: Transverse collective modes

Taras Bryk and Ihor Mryglod
Institute for Condensed Matter Physics, National Academy of Sciences of Ukraine, 1 Svientsitskii Street, UA-79011 Lviv, Ukr

~Received 19 January 2000!

The parameter-free generalized collective modes approach in eight-variable approximation is applied for
investigation of transverse dynamics of Lennard-Jones liquid Kr-Ar beyond the hydrodynamic region. We find
four branches of propagating eigenmodes in the spectrum of transverse collective excitations. Different basis
sets of dynamical variables are applied to estimate the origin of different branches in the spectrum. It is shown
that for large wave numbers the general feature of transverse collective excitations is their ‘‘partial’’ character,
while in hydrodynamic limit they are formed by collective behavior of liquid. A detailed analysis of the
separated contributions from different collective modes into time correlation functions and spectral functions is
performed. The condition of existence of high-frequency mass-concentration waves is derived. It is shown that
high-frequency collective excitations, caused by the mass-concentration fluctuations, reflect some properties of
optic phonon modes in solids.

PACS number~s!: 61.20.Ja, 61.20.Lc, 05.20.Jj
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I. INTRODUCTION

Over the last two decades the theory of dynamics in p
liquids has advanced at a rapid pace. With the active us
computer simulations and memory function theory the stu
of dynamics has progressed from a simple investigation
diffusion and dynamical structure factors to a sophistica
generalization of hydrodynamics, which takes into acco
short-time kinetic processes. For the dynamics of binary
uids the situation is quite different. Only the simplest d
namic properties such as self- diffusion and mutual diffus
are understood pretty well, while the mechanism of form
tion of collective excitations and their contributions into to
spectral functions are not yet established.

The transverse dynamics of binary liquids is much le
investigated even than the longitudinal one. Since transv
excitations are not visible in scattering experiments, o
computer simulations can give some information about sp
tra of transverse modes. However, this information can
very valuable both for the interpretation of computer expe
ments and for understanding in more details the main s
cific features in the dynamics of a binary fluid, which appe
due to the coupling between partial currents. The longitu
nal dynamics is much more complicated because of a
tional coupling between the density and energy fluctuatio
Nevertheless, one can expect that the results obtained fo
transverse dynamics could also be useful for understan
some features of the longitudinal case.

In the last few years there were just a few reports@1–4#
on transverse dynamics of binary liquid and amorphous s
tems, in which the problem of transverse excitations w
considered. Typically, the spectra of transverse~as well as
longitudinal! excitations are obtained from the analysis
Fourier-spectra of ‘‘current-current’’ time correlation fun
tions ~TCFs!, so that the intuitive definition for collective
modes prevails. Within such a scheme the dispersion
damping coefficient of particular modes are directly rela
to the position and width of corresponding maxima in par
or total ‘‘current-current’’ spectral functions~see also Ref.
@5,6#!. It is evident that such an approach is not satisfact
PRE 621063-651X/2000/62~2!/2188~12!/$15.00
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from the theoretical point of view and cannot be conside
as a rigorous one. Hence, the first problem is to define
lective modes in an appropriate way and to study their role
dynamics of fluids.

Within the generalized collective mode~GCM! approach,
proposed originally in Ref.@7# and developed then in Ref
@8–10#, the collective excitations in fluids are directly ass
ciated with eigenvalues of so-called generalized hydro
namic matrix, which determines the time evolution of a sy
tem. Such a definition of collective modes is in agreem
with the generally accepted principle of statistical physi
when collective modes are identified with the poles of c
responding Green function or generalized susceptibility. T
GCM approach was developed with the purpose of theor
cal analysis of TCFs obtained in molecular dynamics~MD!.
MD-derived functions contain in their shape the informati
about all possible long- and short-time processes in liq
~diffusivelike, propagating, and kinetic collective modes!,
and mode-coupling effects. The analysis based on hydro
namic set of equations fails to explain the shape of MD fu
tions, because such a method can only describe the m
long-time processes in fluid. The GCM method, which is t
most consistent approach of generalization of hydrodyna
ics, treats on the same footing the long- and short-time p
cesses: the generalized Langevin equation for time corr
tion functions is solved in matrix form using the basis set
dynamical variables, which in addition to hydrodynam
variables contains their time derivatives. The time evolut
of these ‘‘extended’’ variables, which describe processes
shorter time scale than hydrodynamic one, is obtained
computer experiments to evaluate relevant time correla
functions and static averages. In general, the basis set oNv
dynamical variables generates aNv3Nv secular equation
and results inNv generalized collective modes~eigenvalues!.
AmongNv eigenvalues the lowest ones always correspon
the hydrodynamic modes, which have the right asympto
at k→0 predicted by linear hydrodynamics. All other eige
values are calledkineticmodes, which correspond to the pro
cesses of short-time scale and cannot be obtained within
standard hydrodynamic treatment.
2188 ©2000 The American Physical Society
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PRE 62 2189GENERALIZED HYDRODYNAMICS OF BINARY . . .
For transverse dynamics the GCM approach has been
plied for the study of a simple Lennard-Jones liquid@8,11#
and a liquid metallic Cs@12#, where the collective mode
spectra, time correlation functions and the generali
(k,v)-dependent (k andv being wave vector and frequenc
respectively! shear viscosities were calculated. The obtain
results within the Markovian approximation were in go
agreement with molecular dynamics data over the wh
range of wave numbers and frequencies considered. On
the main findings herein was the dispersion of the low
branch of propagating modes, which was able to explain
the peculiarities of crossover from viscous to elastic beha
in simple fluids. The main feature of this crossover is t
existence of propagating gap with the width depending
temperature. In Ref.@3# the temperature dependence
propagating gap was studied for a metallic binary gla
forming system Mg70Zn30.

Comparing the transverse dynamics of binary fluids w
the case of a simple liquid one can expect some spe
features due to the coupling of different components. In
hydrodynamic limit there is no qualitative difference in th
time behavior of hydrodynamic ‘‘current-current’’ TCFs i
the both cases. This is because the only conserved quant
the density of total transverse current, so that the corresp
ing hydrodynamic equation has the same form. Hence
hydrodynamic limit a binary liquid is treated as an effecti
‘‘averaged’’ one-component fluid and all the specific fe
tures due to difference in species are then neglected. H
ever, beyond the hydrodynamic region, for finite values ok
andv the transverse dynamics of a binary mixture can h
its own specific properties, which are not observed in sim
fluids. As an example we may refer to Brownian particles
a liquid, which can be considered as a binary mixture in
limit of very large mass ratio of heavy and light particle
Another specific feature in dynamics of a binary system
been observed in ionic fluids. In particular, in the dynam
‘‘charge-charge’’ structure factor of liquid LiF~just above
the melting point! it was found~besides the central peak, du
to dissipative processes! two side peaks due to propagatin
charge waves, which were, in fact, opticlike high-frequen
excitations. Moreover, it was found that the spectrum of p
non excitations for crystalline LiF at high temperatures c
relates well with the data for liquid state, and the effect
melting is a comparatively minor one. However, in neut
binary liquids there was neither experimental nor theoret
information about the existence of opticlike excitation
Hence, we aimed in this paper to show how to take i
account in a consistent way two kind of processes in
transverse dynamics: fluctuations of total transverse cur
and mass-concentration fluctuations. This will result in a
pearence of several branches in the spectrum of collec
modes. Hence, another goal of this study is to investigate
origin of each branch of transverse collective excitations
binary liquids.

The paper is organized as follows. In Sec. II an appli
tion of the method of generalized collective modes to
Lennard-Jones liquid Kr-Ar is reported. We give the simpl
analytical treatment of transverse mass-concentration fl
tuations in Sec. III and Sec. IV contains conclusions of t
study.
p-
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II. ANALYSIS OF TRANSVERSE DYNAMICS IN A
BINARY LIQUID

We applied the parameter-free GCM approach to inve
gation of transverse time correlation functions and spectr
of transverse collective excitations of a Lennard-Jon
equimolar Kr-Ar liquid at temperatureT5116 K and density
n50.0182 Å23 @13#. The standard molecular dynamic
simulations within microcanonical ensemble for the syst
of 864 particles were performed over 33105 time steps to
obtain the time evolution of basis dynamical variables, r
evant static averages and time correlation functions. Fo
teen k points were considered. The smallest wave num
reached in MD waskmin50.1735 Å21. For eachk point the
shape of MD-derived time correlation functions and t
spectrum of eigenvalues were analyzed within the hi
variable approach@10# of the GCM method. Although the
main features of the spectrum of collective excitations can
reproduced within two-variable approximation, the hig
variable basis set allows to obtain branches of hig
frequency kinetic modes, which due to mode-coupling
fects correct locations of low-frequency branches. It w
shown in Ref.@10#, that the nine-variable approximation fo
longitudinal dynamics of a simple liquid~first three time
derivatives of hydrodynamic variables were taken into
count! allowed to obtain relatively good converged low
frequency branches in spectrum of collective excitatio
The situation with dynamical eigenvalues in the GC
method is quite similar with the standard electronic struct
methods, when the more orthogonal basis functions are ta
in expansion of wave functions, the better converged are
energies of lower bands. The following energy, mass, spa
and time scales were used to reduce the dimension of
evant quantities:«5kBT, m5m̄, s5kmin

21 , t5s(m/«)1/2

54.598 ps.

A. Time correlation functions

The standard hydrodynamic treatment of transverse
namics@14# of binary liquids is based on the only dynamic
variableJt(k)

Jt~k!5J1~k!1J2~k!5
1

AN
(
a51

2

(
i 51

Na

mava i
t exp~ ik•ra i !,

~1!

whereJt(k) is the total transverse current operator,N5N1

1N2 is the total number of particles andra i , va i
t denote a

position and a transverse component of velocity of thei th
particle in the ath species. In that approach the singl
exponential expression is obtained for transverse ‘‘curre
current’’ time correlation functionFJJ

(t)(k,t) @15,14#

FJJ
(t)~k,t !.

M

N
kBT exp$2hk2t/r%5m̄kBT exp$2t/tJJ

h %,

~2!

wherer5M /V andh are a mass density and shear viscos
respectively. Note thatM5m̄N5m1N11m2N2. This result
is valid within the precision of zeroth frequency moment a
can be applied in long length limit for simple fluids as we
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2190 PRE 62TARAS BRYK AND IHOR MRYGLOD
as their mixtures. Hence, in this limit a binary liquid
treated as an effective ‘‘averaged’’ one-component fluid a
all the specific features due to difference in species are
neglected.

We start from the definition of a dynamical variabl
which is the complementary one to the total current opera
~1!. Such a variable is the transverse mutual ma
concentration currentJx(k), which is also the linear combi
nation of partial currentsJ1(k) andJ2(k):

Jx~k!5x2J1~k!2x1J2~k!, ~3!

where xa5maNa /Nm̄5maca /m̄ are the mass concentra
tions x11x251. Note that the dynamic variableJx(k) is
orthogonal to the transverse total currentJt(k) in the sense
of thermodynamic theory of fluctuations. This means t
Fxt(k)5Ftx(k)50. It should be mentioned also that atk
50 the variableJx(k) describes, in fact, the opposite motio
of particles of different species. Another important point
that the mutual diffusion coefficientD12 ~see, e.g., Ref.@16#!
is directly related to the functionFxx(k,t) at k50

D125
1

m̄Sxx~0!
E

0

`

Fxx~0,t ! dt, ~4!

whereSxx(0) is the value of the ‘‘mass concentration-ma
concentration’’ static structure factorSxx(k) @17# at k50.

Thus, we are interested in three transverse time corr
tion functions.~i! Total current autocorrelation function:

Ftt~k,t !5^J1~k,t !J1~k,0!&12^J1~k,t !J2~k,0!&

1^J2~k,t !J2~k,0!&. ~5!

~ii ! Total current–mass-concentration current function:

Ftx~k,t !5x2^J1~k,t !J1~k,0!&1~x22x1!^J1~k,t !J2~k,0!&

2x1^J2~k,t !J2~k,0!&. ~6!

~iii ! Mass-concentration current autocorrelation function:

Fxx~k,t !5x2
2^J1~k,t !J1~k,0!&22x1x2^J1~k,t !J2~k,0!&

1x1
2^J2~k,t !J2~k,0!&. ~7!

Corresponding zeroth frequency moments are

Ftt~k,t50!5m̄kBT,

Ftx~k,t50!50, ~8!

Fxx~k,t50!5x1x2m̄kBT.

Normalized time correlation functionsFtt(k,t) ~5! and
Fxx(k,t) ~7! for five k values in the range 0.173
21.2023 Å21 are shown in Figs. 1 and 2, respective
FunctionsFtt(k,t) display in general the same behavior
transverse current autocorrelation functions in the case
simple liquids@11,12#: at smallk valuesFtt(k,t) behave in
agreement with~2! having long-range exponential tail, whil
by increasingk the negative minimum appears at short tim
that is the consequence of existence of propagating mod
d
en

r
s-

t

,

a-

of

,
in

the system. The position of minimum inFtt(k,t) is changing
towards smaller times by increasingk. One can see in Fig 1
that at the smallestk value reached in our computer expe
ment, the short-time behavior of MD-derived function
Ftt(k,t) is in agreement with general properties of time co
relation functions~odd frequency moments are equal
zero!, while the tail of Ftt(k,t) can be fitted to the single
exponential form~2!. Here we note, that the hydrodynam
expression~2! is obtained in the limitk→0 and does not
reflect the right short-time behavior~for example, the first
time derivative att50 has nonzero value!.

It is seen in Fig. 2, that the functionsFxx(k,t) exhibit
completely different behavior than total current autocorre
tion functionsFtt(k,t). For the smallestk value the function
Fxx(k,t) already has a minimum at;0.11t, which remains
nearly in the same region for allk values shown. In contras
to Ftt(k,t) these functions at very smallk are rapidly decay-
ing and do not have long tails. This means, that ma
concentration fluctuations, which are not taken into acc
within the standard hydrodynamic treatment and which
scribe the processes of shorter time scale than the hydr
namic one, can cause propagating modes.

FIG. 1. Transverse total current autocorrelation functio
Ftt(k,t) for five k values for an equimolar liquid Kr-Ar.

FIG. 2. Transverse mass-concentration current autocorrela
functionsFxx(k,t) for five k values for an equimolar liquid Kr-Ar.
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PRE 62 2191GENERALIZED HYDRODYNAMICS OF BINARY . . .
One can compare the behavior of partial transverse
rent time correlation functionsFi j (k,t), i , j 5Kr,Ar, shown
for k50.1735 Å21 in Fig. 3, with functionsFtt(k,t) and
Fxx(k,t). All three partial time correlation functions have
long-time tail and nonmonotonic behavior att;0.1t. Com-
paring cross-correlation functionsFKrAr(k,t) andFtx(k,t) in
Fig. 3 one can estimate, that partial dynamic cross corr
tions for smallk-values are nearly one order of magnitu
stronger than thet-x ones. Thus, we can conclude, that t
representation of transverse time correlation functions on
basis of total current~1! and mass-concentration current~3!
operators is more appropriate for small wave numbers th
treatment within the basis set of partial operators.

B. Models of transverse dynamics

Basis set of operators in the method of GCM defines
namical variables, which are used to generate an eigenv
problem from the generalized Langevin equation@9,18#. The
number of dynamical variablesNv determines the order o
the eigenvalue problem and the number of single-expone
mode contributions into any GCM time correlation functio

Fi j
(m)~k,t !5 (

a51

Nv

Ga
i j ~k!e2za(k)t, ~9!

where the weight coefficientsGa
i j (k) are expressed via eigen

vectors associated with a dynamical eigenvalueza(k) @9#.
The time evolution of dynamical variables of the basis
can be obtained in molecular dynamics. One has to n
here, that within the Newton dynamics any operator of
basis set is expessed in an analytical form via positions
particles, their velocities, and spatial derivatives of int
atomic potential~see Ref.@9#!. Hence, one can evaluate d
rectly in MD any static average between basis variab
within the same precision.

Since the dynamical variables of transverse total curr
~1! and mass-concentration current~3! define completely the
transverse dynamics of binary liquids, the basis set of op
tors within the method of GCM for the theoretical analysis

FIG. 3. Partial transverse current time correlation functio
Fi j (k,t)( i , j 5Kr,Ar) for k50.1735 Å21. The cross-correlation
function Ftx(k,t) ~total current–mass-concentration current! is
shown for comparison by dotted line.
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transverse dynamics consists of these two variables and
first s time derivatives. One obtains the better agreement
tween MD-derived time correlation functions and their GC
functions~9!, when the higher number of time derivatives
dynamical variables are included into the basis set~this
means that 2s11 frequency moments are identical for MD
derived TCFs and GMC functions!. In this study we used the
basis set of eight operators, which includedJt(k), Jx(k) and
their first time derivatives up to the third order including

A(8)~k!5$A0 ,i L̂ NA0 ,~ i L̂ N!2A0 ,~ i L̂ N!3A0%, ~10!

where i L̂ N is the Liouville operator, andA05A0(k)
5$Ĵt(k),Ĵx(k)%. This basis set will provide for the GMC
functions Fi , j

(m)(k,t) with i , j 5t,x the precision within the
sixth frequency moments. For comparison, the ‘‘curre
current’’ TCFs are usually studied within the approximati
of the second frequency moments in memory function
proach. It was shown in Ref.@8#, that the high-variable ap
proximation with first three time derivatives of hydrody
namic variables produced GCM functions in perfe
agreement with MD data.

To calculate the generalized collective mode spectr
within the method of GCM we generate the eigenvalue pr
lem ~see Ref.@9,18#! for the generalized hydrodynamic ma
trix

T~k!5F~k,t50!@ F̃~k,z50!#21

using the basis set~10!. For this basis set one obtains 838
secular equation with the real symmetric matrix of static c
relation functionsF(k)5F(k,t50)

F~k!5S F00~k! 0 2F11~k! 0

0 F11~k! 0 2F22~k!

2F11~k! 0 F22~k! 0

0 2F22~k! 0 F33~k!

D ,

~11!

and antisymmetric matrixF̃(k)5F̃(k,z50),

F̃~k!5S I ~k! F00~k! 0 2F11~k!

2F00~k! 0 F11~k! 0

0 2F11~k! 0 F22~k!

F11~k! 0 2F22~k! 0

D .

~12!

Each matrix element in~11! and~12! is a 232 matrix evalu-
ated on relevantt-x operators. The subindex denotes the
der of time derivatives of current operators, for example,

F11~k!5S ^ J̇tJ̇t& ^J̇tJ̇x&

^ J̇xJ̇t& ^J̇xJ̇x&
D . ~13!

Similarly, I (k) is the 232 matrix with elements

I ab~k!5E
0

`

Fab~k,t !dt, a,b5Jt ,Jx . ~14!

s
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2192 PRE 62TARAS BRYK AND IHOR MRYGLOD
It is worth mentioning that almost all matrix elements
F(k) andF̃(k) are static correlation functions, which can b
directly evaluated in molecular dynamics. Only the quan
ties I (k) ~14! contain information about time-depende
properties of the system but they can be also estimated f
computer experiments. UsingI ab(k) one can obtain expres
sions for correlation times relevant for transverse dynam
of a binary liquid

t tt~k!5
I JtJt

Ftt~k,t50!
, txx~k!5

I JxJx

Fxx~k,t50!
. ~15!

From the expression~2! one can evaluate the small-k asymp-
totics for the correlation timet tt(k)}k22. We show in Fig. 4
the behavior of functionsf ab(k)5k2I ab , a,b5Jt ,Jx .
Since we included the nonhydrodynamic variableJx(k) into
the basis set~10! with the purpose to take into account mas
concentration fluctuations in transverse dynamics of a bin
liquid, one can expect different behavior of correlation tim
~15! at smallk values. One can see from the Fig. 4 that t
correlation timet tt(k) behaves in complete agreement w
hydrodynamics having asymptotics}k22 for smallk values.
For largek values the functionk2t tt(k) behaves}k, that is
consistent with the behavior of generalized static shear
cosity as the function ofk21 in Gaussian limit. For smallk
the functionsf tx(k) and f xx(k) are weakly dependent onk
and tend to zero in the limitk→0. This means, that contrar
to t tt(k) other correlation times do not have the hydrod
namic asymptotics.

It is possible to consider separated subsets of dynam
variables with the purpose to establish the origin of differ
branches in the spectrum of eigenvalues. Let us const
two separated subsets

A(4a)5$Ĵa ,i L̂ NĴa ,~ i L̂ N!2Ĵa ,~ i L̂ N!3Ĵa%, a5t,x.
~16!

In this case two separated subsets form the ‘‘coupled’’ eig
variable basis setA(8)(k) and it is obvious, that for separate
subsets thet-x cross correlations are neglected. As it w
shown in previous section, thet-x dynamic cross correla

FIG. 4. Functions f ab(k)5k2I ab , a,b5Jt ,Jx , calculated
from Eq. ~14! on the basis of MD-derived time correlation fun
tions.
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tions for smallk values are much smaller, than the part
ones. In this case, one can expect that the solutions of
434 secular equations generated for basis sets~16! will be
very close to the eigenvalues obtained for the ‘‘couple
eight-variable basis set~10!. This would permit to identify
the origin of different branches in the spectrum of transve
collective excitations and to estimate the mode-coupling
fects between them. Similarly, an analysis of spectra can
performed using another kind of separated partial subse

A(4 j )5$Ĵ j ,i L̂ NĴj ,~ i L̂ N!2Ĵ j ,~ i L̂ N!3Ĵ j%, j 5Kr,Ar.
~17!

In this case each subset would allow to analyze separa
partial dynamics of components when cross correlation
different species is neglected.

Similar analysis of the spectrum using separated sub
of dynamical variables was used in Ref.@19# for investiga-
tion of longitudinal collective modes in liquid bismuth. Th
allowed to find a branch of heat waves in the spectrum
collective excitations of a liquid semimetal.

C. Spectra of transverse excitations

One of the predictions of hydrodynamics is the absence
transverse sound waves in the limitk→0, what means tha
the liquid does not support long-wave transverse sound
citations. A width of hydrodynamic region, where the acou
tic transverse excitations cannot propagate depends on
thermodynamic point considered. It is interesting that t
width decreases by cooling and vanishes in amorphous
tems, where transverse sound waves are well defined ev
k→0. In Ref.@3# the temperature dependence of propagat
gap for transverse sound was investigated for liquid and
dercooled metallic alloy Mg70Zn30 within the method of
GCM. In the case of the liquid mixture Kr-Ar at 116 K w
find in contrast to Mg70Zn30 a very wide propagation gap. In
Fig. 5 the imaginary and real parts of eigenvalues obtai
within the four-variable basisA„4t… are shown. One can see i
Fig. 5 that there exists a smallk region where the lowes
collective mode is purely diffusive and acousticlike tran
verse modes cannot propagate. This propagation gap d
mines, in fact, the range of hydrodynamic viscous behav
in a fluid @20#. Beyond the propagation gap, two pairs
propagating modeszj

6(k) are obtained for the four-variabl
setA„4t… ~shown by symbols in Fig. 5!:

zt, j
6 ~k!56 iv j~k!1s j~k!, s j5Rezj

6~k!.0, j 51,2.
~18!

Inside the propagation gap the lowest pair of propagat
modeszt,1

6 (k), which is well defined fork.kH and associ-
ated with shear~or transverse acousic-like! waves, disap-
pears and transforms into two relaxing modes with pur
real eigenvaluesz6,R(k),

Im zt
j ,R~k!50, j 51,2. ~19!

For a binary Kr-Ar mixture we obtained a rather wide prop
gating gap withkH;0.35 Å21. When k is small, one of
these modeszt

1,R(k) behaves as
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PRE 62 2193GENERALIZED HYDRODYNAMICS OF BINARY . . .
Rezt
1,R~k!.Dk2 ~20!

with D being a kinematic viscosity (D5h/r) known from
the standard hydrodynamic treatment@15,14#. By analogy,
this mode can be called viscodiffusive one becauseD is pro-
portional to the shear viscosityh of the system. The secon
relaxing modezt

2,R(k) is a kinetic one because in the hydr
dynamic limit zt

2,R(k) it tends to the nonzero value, whic
gives a finite damping coefficient. This means, that the
netic modezt

2,R(k) is irrelevant in hydrodynamic limit. The
same can be said about all kinetic modes, which have fi
damping coefficient in the limitk→0. However, these ki-
netic modes contribute significantly into dynamics beyo
the hydrodynamic region. The spectrum, obtained within
basisA„4t… and shown in Fig. 5, has the same number
modes and the same features as those obtained for simp
liquid @8,11# and metallic Cs@12#.

The difference between spectra of transverse excitat
in a binary system and simple liquid appears when we ap
the ‘‘coupled’’ basis setA„8… ~10! for the solution of the
generalized Langevin equation. We obtained four pairs
propagating modes beyond the propagating gap fok
>0.357 Å21 ~Fig. 6!:

zj
6~k!56 iv j~k!1s j~k!, s j5Rezj

6~k!.0, j 51,2,3,4.
~21!

The same splitting of the lowest pair of propagating mod
into relaxing ones inside the propagating gap was obtain
Comparing Figs. 5 and 6 one can conclude, that the m
difference is the appearence of two additional branches
propagating excitations with intermediate frequencies
tween propagating modes obtained on the basis set
structed of total operators. Thus, taking into account ma

FIG. 5. Imaginary and real parts of eigenvalues obtained for
four-variable setA„4t… ~16!. Spline interpolation of eigenvalues i
shown by solid line.
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concentration fluctuations we obtained two addition
branches of propagating transverse excitationsz2

6(k) and
z3

6(k). The most interesting is the lower branchz2
6(k),

which has very flat dispersionv2(k) and fork.0.8 Å21 it
is just above the generalized acoustic branchz1

6(k). We
have to stress, that the basis set~10! results in spectrum of
collective excitations, where the mode coupling effects
tween mass concentration and total current fluctuations
already taken into account. Therefore, the branchesz1

6(k)
and z4

6(k) get some shift due to ‘‘hybridization’’ with
branchesz2

6(k) and z3
6(k) in comparison with the ‘‘bare’’

brancheszt,1
6 (k) andzt,2

6 (k) ~Fig. 5!, obtained without taking
into account mass-concentration fluctuations.

The origin of branches is clearly understood, when
apply for analysis of ‘‘coupled’’ spectrum the separated su
sets~16! and~17!. In Fig. 6 we show by different four lines
results obtained for the separated basis sets. The intere
result for the eight-mode spectrum is the ‘‘partial’’ chara
hter of branches beyondQp/2, whereQp is the position of
main peak of the structure factorSNN(k). One can see from
the Fig. 6, that the branchz2

6(k) at large values ofk is
defined only by the light component~Ar! of the binary sys-
tem, while the lowest branchz1

6(k) reflects the dynamics o
heavy component~Kr!. Interesting, that fork→` the ratio of
frequencies of branchesz2

6(k) andz1
6(k) taken at the larges

k value considered in this study is;1.482 that is close to
AmKr /mAr51.448. This has some analogy with the cryst
line state. In binary solids within the harmonic approxim
tion it is known @21#, that the frequencies of optic~high-
frequency! and acoustic~low-frequency! phonon branches on

e FIG. 6. Spectrum of collective excitations for a liquid KrA
obtained for the ‘‘coupled’’ basis setA(8)(k,t) ~10! shown by sym-
bols. The eigenvalues obtained on the separated basis set
shown by spline-interpolated lines: solid, dashed, dotted,
dashed-dotted lines correspond to results on the four-variable
A„4t…, A„4x…, A„4,Kr …, and A„4,Ar…. Qp denotes the position of main
peak for the ‘‘number-number’’ static structure factorSNN(k).



pa

on
ne

in

lue

’’
e

c

fu
nt
m
ha
-
to

ve

r

on
t
c

nd
o
is

ic

e
r-
n

nt

an
le
-
t
in

es

e

In

d

e
and

2194 PRE 62TARAS BRYK AND IHOR MRYGLOD
the Brillouin zone boundary depend on the masses of
ticles asC/Amlight and C/Amheavy, whereC is some elastic
constant, respectively. This analogy between dynamics
liquid and solid states becomes strightforward when we c
siderQp/2 as the boundary of the first pseudo-Brillouin zo
in a binary liquid, becauseQp;2p/^a&, where ^a& is the
average interparticle distance.

One can obtain within two-variable approximation
Gaussian limit

z2
6~k!

z1
6~k!

5Amheavy

mlight
. ~22!

In high-variable approximations the deviation from the va
~22! is caused by coupling effects with higher branches.

At k,Qp/2 one can see in Fig. 6, that the ‘‘partial
charachter of the spectrum changes to ‘‘collective’’ on
which becomes dominant fork→0. The branchz2

6(k) in
that limit is completely defined by mass-concentration flu
tuations. For the liquid Kr-Ar the condition~25! for exis-
tence of mass-concentration waves, derived in Sec. II, is
filled in the wholek region investigated. Taking into accou
the fact, that these fluctuations are caused by opposite
tion of particles in different species, we can conclude, t
the propagating modesz2

6(k) correspond to optic like trans
verse excitations in the binary liquid. However, in contrast
crystalline state, in a binary fluid these optic like collecti
excitations have finite time of lifet2(k) defined by their
damping coefficients~real parts of eigenvalues!. We esti-
mated that the opticlike collective excitations in the Kr-A
mixture are characterized byt2(k);0.2 ps~see Fig. 6!. The
branchesz3

6(k) and z4
6(k) correspond to excitations with

extremely small time of life, which are caused by mass c
centration and total current fluctuations, respectively. Due
mode coupling effects these extremely high-frequen
branches renormalize the position of ‘‘bare’’ acoustilike a
opticlike modes, wich can be obtained within precision
the second frequency moments~ two-variable separated bas
sets!.

In the case of Kr-Ar mixture the smallestk point, reached
in MD experiment, was located, in fact, in the hydrodynam
region (kmin,kH), so we could use~20! and estimated the
value of the shear viscosityh. In such a way it was found
that h52.51731024 Pa s. This correlates well with th
value 2.3631024 Pa s obtained from the Green-Kubo fo
mulas by integrating the relevant time correlation functio
Both our results are in good agreement with the experime
and MD data known previously@13# for the Kr-Ar liquid at
116 K.

D. Mode contibutions into time correlation functions

The method of GCM makes possible to represent
time correlation function between basis dynamical variab
as the sum of mode contributions~9!. Since in previous sec
tion we identified the branchz2

6(k) as the opticlike modes, i
is interesing to estimate how these excitations contribute
different time correlation functions.

In Figs. 7~a!, 7~b! one can see how the different branch
contribute into time correlation functionsFtt(k,t) and
Fxx(k,t) for two k values. By asterisks the MD-derived tim
r-
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correlation functions are shown. GCM functions~9!, shown
by solid lines, are in good agreement with MD functions.
general, for bothk values the behavior ofFxx(k,t) is defined
by the opticlike branchz2

6(k). Only short-time behavior has
some mixing of other branches. The functionFtt(k,t) has for
k5kmin two main contributions: long-time tail is determine
exclusively by the viscodiffusive modezt

1,R(k), while the

FIG. 7. The separated mode contributions intoFtt(k,t) and
Fxx(k,t) time correlation functions for twok values. MD-derived
function and the result of GCM study~9! are shown by symbols and
solid lines, respectively. Mode contributions from kinetic optic-lik
waves, generalized shear excitations are given by dashed
dashed-dotted lines, respectively.
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FIG. 8. The separated mode contributions into partialFi j (k,t), (i , j 5Kr,Ar) time correlation functions for fourk values. All settings are
as in previous figure.
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short-time behavior has rather strong negative contribu
of the second relaxing kinetic modezt

2,R(k). This contribu-
tion makes the deviation from the asymptotic hydrodynam
single-exponential form, defined by the contribution of v
codiffusive modezt

1,R(k) even in hydrodynamic region. Fo
higherk values,kH,k,Qp/2 the functionFtt(k,t) is nearly
almost due to contribution of the propagating branchz1

6(k).
Very week contributions of higher branchesz3

6(k) and
z4

6(k) correct slightly the short-time behavior of time corr
lation functions.

According to our analysis of spectrum fork,0.7 Å21 the
transverse dynamics of binary liquid is described well
terms of mass concentration and total-current fluctuatio
For k.Qp/2 the description is correct in terms of parti
current fluctuations. We show in Figs. 8~a!–8~d! contribu-
tions of different branches into partial time correlation fun
tions for differentk values within the investigatedk region.
In agreement with the analysis of spectra the partial ti
correlation functionsFKrKr(k,t) and FArAr(k,t) are mainly
described by contributions from the branchesz1

6(k) and
z2

6(k), respectively. For the smallestk value @Fig. 8~a!# all
three partial time correlation functionsFKrKr(k,t),
FKrAr(k,t), andFArAr(k,t) have very long tail, which is de
n

c
-

s.

-

e

fined by viscodiffusive modezt
1,R(k). The short-time part of

all three partial functions has rather big contributions of
netic relaxing modezt

2,R(k) and opticlike modesz2
6(k). This

is rather surprising, that opticlike modes contribute so s
nificantly into the short-time behavior of partial time corr
lation even in hydrodynamic region. Fork50.4908 Å21

@Fig. 8~b!# the situation with contributions is a little bit dif
ferent. Only week tails of all three functions fort.0.25t are
defined by the lowest branch of shear waves~acoustic trans-
verse excitations!, while for smaller times the contribution
from opticlike branch are comparable with those from t
generalized acoustic branch. Even, there appears the
dency for functionsFKrKr(k,t) to be described for interme
diate times mainly by contributions fromz1

6(k) and the func-
tions FArAr(k,t) by z2

6(k). This tendency becomes the ru
for largek values: autocorrelation partial current functions
light-heavy species in a mixture are determined almost co
pletely ~except very short-time part! by the modes of higher-
lower branch@see Fig. 8~c!, 8~d!#. For allk values beyond the
propagation gap the contributions from acousticlike and
ticlike branchesz1

6(k) andz2
6(k) into cross-correlation func-

tion FKrAr(k,t) are in opposite phases. For largek-values
cross-correlation partial functions become extremely sm
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FIG. 8 ~Continued!.
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and irrelevant for consideration of collective effects.
All this treatment of mode contributions into differen

time correlation functions is in agreement with our result
the spectrum of transverse collective excitations: at smak
values all dynamical properties are described well in term
mass concentration and total current fluctuations, while
largek the ‘‘partial’’ picture in dynamics prevails.

E. Total spectral function

We can define different spectral functions as the Fou
transform of time correlation functionsFtt(k,t) and
Fxx(k,t). Using the expression

F̃i j
(m)~z!5 (

a51

Nv Ga
i j ~k!

z1za~k!
, z5 iv, ~23!

we are able to investigate mode contributions into any sp
tral function of interest. However, in scattering experime
one can explore only longitudinal processes in dynamics
liquids. And the longitudinal total ‘‘current-current’’ spectra
function, expressed via total dynamic structure factor o
binary liquid as

Cl~k,v!5
v2

k2
S~k,v!,
r

f
r

r

c-
s
f

a

does not contain mass factors, which we used for definit
of current operators. It follows, that the total spectral fun
tion defined as the Fourier-transform ofFtt(k,t) ~5! has other
weights for partial contribution, than longitudinal one me
sured in scattering experiments. Therefore, to keep so
analogy with longitudinal case we report here the parame
free analysis of mode contributions into the total transve
spectral functionCt(k,v),

Ct~k,v!5Fuu~k,v!,

where û(k,t)5 Ĵ1(k,t)/m11 Ĵ2(k,t)/m2 is defined in usual
way as the weighted sum of partial spectral functions. N
that Ĵ15x1Ĵt1 Ĵx and Ĵ25x2Ĵt2 Ĵx . In contrast to longitu-
dinal case the transverse spectral functionCt(k,v) has non-
zero value atv50, which is connected with the value o
generalized shear viscosityh(k), namely, Ct(k,v50)
;h21(k). In Fig. 9 the functionCt(k,v) for a Kr-Ar mix-
ture as well as the separated contributions from the lo
frequency collective modes, calculated for the ‘‘coupled’’ s
of dynamic variablesA„8…, are displayed for several values o
k. It is seen that in complete agreement with the stand
hydrodynamics for smallk (k50.1735 Å21 is within the
propagating gap! the total spectral function is nearly com
pletely defined by the viscodiffusive hydrodynamic mo
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zt
1,R(k). The total contributions from the other high

frequency modes for the smallestk are practically equal to
zero ~note that the second relaxing modezt

2,R(k) has very
small negative weight!. We emphasize that for intermedia
k-values the contribution from the opticlike collective mod
z2

6(k) increases and becomes even dominant fork
.1 Å21. For all thek values considered beyond the prop
gation gap we find that the functionCt(k,v) displays a
maximum atvÞ0. However, one may expect that in a b
nary system with a large difference in location of opticli
and acousticlike excitations two maximum structure of
total spectral function can also be observed.

III. CONDITION FOR EXISTENCE OF LONGWAVE
OPTICLIKE EXCITATIONS

The study of opticlike~mass-concentration! modes and
their role in transverse dynamics of binary liquids can
completed by a simple analytical treatment of ma
concentration current fluctuations. The task is to take i
account the damping of kinetic opticlike modes, which

FIG. 9. Separated contributions toCt(k,v) from the opticlike
z2

6(k) ~solid line with dots! and acoustilike modesz1
6(k) ~bold

dots! for liquid Kr-Ar. The total spectral functionCt(k,v) is shown
by a solid line. Atk50.1735 Å21 the contributions from the vis-
codiffusive modezt

1,R(k) and the relaxing kinetic modezt
2,R(k) are

shown by bold dots and dots, respectively.
-

e

e
-
o

contrast to the case of hydrodynamic modes remains a n
zero one in the limitk→0.

The simplest set of memory function equations@or mac-
roscopic equations of motion for a nonequilibrium averag
dynamical variablê Jx(k)&v] @22,23,20# can be written in
the form

iv^Jx~k!&v2^J̇x~k!&v50,

G0
x^Jx~k!&v1~ iv1w̃1

x~k,v50!!^J̇x~k!&v50,

whereG0
x(k) andw̃1

x(k,v50) are the second frequency mo
ment and first order memory function in Markovian appro
mation, respectively,

G0
x~k!5

^J̇x~k!J̇x~2k!&

^Jx~k!Jx~2k!&
5v̄2,x~k!, w̃1

x~k,v50!5
1

tx1~k!
.

Here tx1(k) is a k-dependent Maxwell-like time of relax
ation. Hence, the solutions of the system of two equations
the collective modes are given by

zx
6~k!5

1

2tx1~k!
6F 1

@2tx1~k!#2
2v̄2,x~k!G 1/2

, ~24!

and, depending on the relation between the Maxwell-like
laxation timetx1(k) and the second order frequency mome
v̄2,x(k) of TCF Fxx

t (k,t), one has two different kinds o
collective modes:~i! two purely relaxing modes for the cas
when v̄2,x(k)@tx1(k)#2,0.25 and ~ii ! two complex-
conjugated propagating modes forv̄2,x(k)@tx1(k)#2.0.25.
It is easily checked that in Gaussian approximation for
TCF Fxx

t (k,t) the condition~ii ! is always valid. Using the
expression for the zeroth-order correlation timetx0(k),
which is connected via Green-Kubo-like equation with tim
correlation functionFxx(k,t)

tx0~k!5
1

Fxx~k!
E

0

`

Fxx~k,t !dt5@v̄2,x~k!tx1~k!#21,

the condition of existence of propagating mass-concentra
waves ~or opticlike collective modes! zx

656 ivx(k)
1sx(k) can be obtained from~24! in the form

v̄2,x~k!tx0
2 ~k!/4,1. ~25!

In the hydrodynamic limit we can rewrite~25! as

d[v̄2,x~0!Dab
2 Sxx

2 ~0!/4~xaxbkBT!2,1. ~26!

It is seen, that there are several factors, which determine
existence of opticlike excitations in the limitk→0, namely,
the mutual diffusionDab , structure factorSxx(k50), tem-
perature T, and the second order frequency moment
Fxx(k,t). In particular, the high mutual diffusion and ten
dency to demixing in the system@whenSxx(0) is large# pre-
vent the emergence of opticlike transverse modes. W
condition ~26! is valid, the frequencyvx(0)5Im zx

1 and
dampingsx(0)5Rezx

6 of opticlike modes atk50 are
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vx~0!5Av̄2,x~0!~12d!, sx~0!5Av̄2,x~0!d. ~27!

We see in~26! and ~27! an interesting connection betwee
the frequency and damping coefficient of opticlike transve
excitations in longwave limit. In particular, for smalld an
opticlike branch becomes very ‘‘soft’’ and can look even li
a pseudosound one.

It is seen from the results presented in this section that
opticlike propagating excitations, which are caused by m
tual mass-concentration fluctuations, can exist in a bin
fluid. Such excitations were found previously for ionic liq
uids with charged particles in the species~see, e.g., Refs
@24,25#!. However, the general opinion was, that they are
specific feature of charged binary liquids only, and canno
observed in a mixture of neutral fluids. One can easily ver
that the charge currentJQ(k),

ĴQ~k!5
Q1

m1
Ĵ1~k!1

Q2

m2
Ĵ2~k!,

when an ionic liquid is totally neutral, is simply related to th
mass-concentration currentJx(k), namely,

JQ~k!5 S Q1

m1
2

Q2

m2
D Jx~k!.

Hence, the opticlike excitations, observed in an ionic liqu
are in fact the mutual mass-concentration waves discusse
this paper. The main difference between the cases of io
and neutral liquids is the following: the oppositely charg
particles in different species create in their relative motion
electric field, which can be detected in optic experiments
a neutral binary liquid the concentration fluctuations prop
ties cannot be directly determined experimentally. O
computer simulations and special analysis of mode contr
tions can shed light on the physics of high-frequency exc
tions and their manifestation in experimental data.

IV. CONCLUSIONS

~i! In this study the parameter-free method of generali
collective modes is extended for investigation of transve
dynamics of a binary liquid taking into account simult
neously total- and mass-concentration current fluctuation

~ii ! A condition of existence of mass-concentration wav
~opticlike excitations! is derived, and it follows that high
mutual diffusion and tendency to demixing in a binary sy
tem prevent the emergence of opticlike modes in longw
limit.
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~iii ! The high number of dynamical variables in basis
used in numerical study enables to obtain transverse G
functions within the precision of the sixth frequency m
ment. For comparison, the memory function approach
transverse dynamics is usually applied within the precis
of the second frequency moment. Such a high-variable
proach in the case of transverse dynamics allows to obtain
to four branches of propagating excitations in the spectru

~iv! The original analysis of spectra using separated s
sets of dynamical variables makes it possible to conclu
that the branch of propagating transverse modes with in
mediate frequencies is caused mainly by mass-concentra
current fluctuations. This branch of transverse excitation
just above the transverse ‘‘acoustic’’ branch and correspo
to opticlike modes in the binary liquid.

~v! The feature of branches of transverse collective ex
tations is their ‘‘partial’’ character beyond the first pseud
Brillouin zone, fork.Qp/2. For smallk values the collective
modes reflect collective properties of the system being
scribed correctly in terms of total- and mass-concentrat
current fluctuations.

~vi! We found the propagation gap for transverse sou
for k,0.35 Å21. In this region two relaxing modes appe
instead of the lowest pair of transverse sound modes. On
them is the viscodiffusive hydrodynamic mode with real
genvalue;hk2. The value of shear viscosity, obtained fro
this eigenvalue, is 2.51731024 Pa s, that is in good agree
ment with experiments and computer simulation results@13#.

~vii ! We were able within the GCM method to separa
contributions from different modes into time correlatio
functions and their Fourier spectra. We found, that imme
ately beyond the propagation gap the contribution of the
ticlike branch is comparable with the contribution of tran
verse sound modes and is much bigger, than one from
other kinetic modes. If the similar picture of mode contrib
tions exists in longitudinal case, there should exist bin
liquids for which the opticlike modes would be visible o
dynamical structure factors.
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